Proton NMR Spectroscopy as a Probe of Dinuclear Copper(II) Centers

Richard C. Holz* and Julie M. Brink

Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322

Received March 24, 1994

Enzymes containing dinuclear Cu(II) centers play important roles in nature and, consequently, characterization of their structure and function is a problem of outstanding importance.^{1,2} A fundamental and, as yet, largely unexplored issue is the determination of the structural and magnetic properties of dinuclear Cu(II) centers using NMR spectroscopy. ¹H NMR is a natural technique to probe these systems because only protons proximate to the paramagnetic center are affected.^{3,4} However, the slow electronic relaxation typical of Cu(II) ions makes this type of study extremely difficult to execute, and correspondingly few examples exist in the literature.⁵⁻¹² In an effort to gain insight into the structures of dinuclear Cu(II) metalloprotein active sites and model complexes, we have applied one- and two-dimensional ¹H NMR techniques to an antiferromagnetically coupled (µ-phenoxo)(µ-hydroxo)dicopper-(II) complex. Clear COSY cross-signals are observed between hyperfine shifted signals allowing the complete assignment of the ¹H NMR spectrum. These data, coupled with X-ray crystallographic results, indicate that a paramagnetic dipolar relaxation mechanism is the dominant proton relaxation pathwav.

The previously reported (µ-phenoxo)(µ-hydroxo)dicopper(II) complex [Cu₂(BPMP)(OH)](ClO₄)₃ (1) was synthesized and crystallographically characterized.¹³⁻¹⁵ Complex 1 exhibits several sharp, isotropically shifted ¹H NMR signals in acetonitrile solution at 55 °C in the 150 to -50 ppm chemical shift range (Figure 1,²⁵ Table 1). All of the isotropically shifted signals sharpen and shift toward the diamagnetic region as the temperature is increased. While magnetic data have not been

- Karlin, K. D.; Tyeklar, Z. Bioinorganic Chemistry of Copper; Chapman (2)& Hill: New York, 1993.
- (3) Bertini, I.; Luchinat, C. NMR of Paramagnetic Molecules in Biological Systems; Benjamin & Cummings: Menlo Park, CA, 1986
- (4) NMR Methodology for Paramagnetic Proteins; La Mar, G. N., de Ropp, J. S., Eds.; Plenum Press: New York, 1993; Vol. 12, pp 1-78.
- (5) Bertini, I.; Luchinat, C. In Physical Methods for Chemists, 2nd ed.; Drago, R. S., Ed.; Harcourt Brace Jovanovich: Orlando, FL, 1992; pp 500-556.
- (6) Bertini, I.; Turano, P.; Vila, A. J. Chem. Rev. 1993, 93, 2833-2932.
- (7) Zelonka, R. A.; Baird, M. C. Inorg. Chem. 1972, 11, 134-137.
- (8) Wang, S.; Pang, Z.; Zheng, J.-C.; Wagner, M. J. Inorg. Chem. 1993, 32, 5975-5980
- Maekawa, M.; Kitagawa, S.; Munakata, M.; Masuda, H. Inorg. Chem. 1989, 28, 1904-1909
- (10) Dei, A.; Gatteschi, D.; Piergentili, E. Inorg. Chem. 1979, 18, 89-93.
- (11) Kitajima, N.; Fujisawa, K.; Fujimoto, C.; Moro-oka, Y.; Hashimoto, S.; Kitagawa, T.; Toriumi, K.; Tatsumi, K.; Nakamura, A. J. Am. Chem. Soc. 1992, 114, 1277-1291.
- (12) Byers, W.; Williams, R. J. P. J. Chem. Soc., Dalton Trans. 1972, 555-560.
- (13) Maloney, J. J.; Glogowski, M.; Rohrbach, D. F.; Urbach, F. L. Inorg. Chim. Acta 1987, 127, L33-L35.
- (14) Abbreviations: BPMP = 2,6-bis[[bis(2-pyridy]methyl]amino]methyl]-4-methylphenol; $CH_3HXTA = N,N'-(2-hydroxy-5-methyl-1,3$ xylylene)bis(N-(carboxymethyl)glycine).
- (15) X-ray analysis for $[Cu_2(BPMP)(OH)](ClO_4)_3$ (1) $(C_{33}H_{34}N_6O_{10}Cu_2-10)$ Cl₂): monoclinic space group $P2_1/c$, a = 11.843 (3) Å, b = 22.126 (7) Å, c = 14.356 (6) Å, and $\beta = 105.58$ (2)°, with V = 3623.8 (16) Å³, $g_{calcd} = 1.600$ g cm⁻³, and Z = 4. A total of 4825 unique reflections out of $2\theta = 50^{\circ}$ Mo K α were collected at -100°C on a Seimens P4 diffractometer equipped with an LT-2a lowtemperature device. The structure was solved by Patterson methods and refined anisotropically to R = 5.71%, $R_w = 6.89\%$ using SHELXTL-PLUS programs (Siemens).

reported for 1, -2J values for several related (µ-phenoxo)-(µ-hydroxo)dicopper(II) complexes have been reported.¹⁶⁻¹⁹ All of these complexes exhibit moderate to strong antiferromagnetic coupling between the Cu(II) centers with -2J values greater than 100 cm⁻¹. Using the Evans susceptibility method,^{20,21} the room temperature magnetic moment (μ_{eff}/Cu) of 1 was found to be 1.27 μ_B which gives the number of unpaired electrons (n/Cu) as 0.62. These data indicate that the Cu(II) ions in 1 are moderately antiferromagnetically coupled. Since the magnetic moment of the complex is small, relatively sharp isotropically shifted NMR signals are observed.¹²

Several of the isotropically shifted ¹H NMR signals observed for 1 can be initially assigned by inspection of their peak areas. Signals D (23.6 ppm), E (22.2 ppm), F (14.6 ppm), G (9.93 ppm), and H (5.12 ppm) integrate to 4:4:2:4:3 protons, respectively (Table 1). These data taken together with the crystallographic results suggest that signals D, E, and G arise from pyridyl protons while signals F and H are due to the *m*-phenol and the *p*-methylphenol protons, respectively. Definitive assignment of each of these signals comes from twodimensional NMR techniques. A magnitude COSY spectrum of 1 was recorded at 25 °C and clearly shows cross-signals between resonances D and G and also between resonances E and G (Figure 2). These signals can be unequivocally assigned to the pyridine β -H (E), β' -H (D), and γ -H (G) protons, respectively.

Assignment of the remaining signals of 1 comes from T_1 values²² and comparison of the spectrum of 1 with that of a related complex $[Cu_2(CH_3HXTA)(OH)]^{2-}$ (2) where the methylpyridyl ligands have been replaced by acetate moieties.^{23,24} The ¹H NMR spectrum of 2 shows five isotropically shifted signals at 55 °C in D₂O and pH 10 (Figure 1²⁵). Signals D (16.8 ppm; 7 ms) and E (9.1 ppm; 25 ms) integrate to two and three protons, respectively, and are thus assigned to the *m*-phenol and *p*-methylphenol protons, respectively. Signals B (69 ppm; ~ 1 ms) and C (62 ppm; ~ 1 ms) are assigned to the diastereotopic β -CH₂ acetate protons based upon their relative integrations, T_1 values, and the fact that they are selectively deuterated at 90 °C and pH 10. The only remaining protons in 2 unassigned are the β -CH₂ protons of the phenol-methylamine linkage. These protons can therefore be assigned to signal A (143 ppm). Comparison of the chemical shift, T_1 values, and

- (16) Murry, K. S. In Biological and Inorganic Chemistry of Copper; Karlin, K. D., Zubieta, J., Eds.; Adenine: Guilderland, NY, 1986; Vol. II.
- (17) Karlin, K. D.; Farooq, A.; Hayes, J. C.; Brett, I. C.; Rowe, T. M.; Sinn, E.; Zubieta, J. *Inorg. Chem.* 1987, 26, 1271-1280.
 (18) Sorrell, T. N.; Jameson, D. L.; O'Connor, C. J. *Inorg. Chem.* 1984,
- 23, 190-195
- (19) Oberhausen, K. J.; Richardson, J. F.; Buchanan, R. M.; McCusker, J. K.; Hendrickson, D. N.; Latour, J.-M. Inorg. Chem. 1991, 30, 1357-1365.
- (20) Evans, D. F. J. Chem. Soc. 1959, 2003-2005
- (21) Phillips, W. D.; Poe, M. Methods Enzymol. 1972, 24, 304-317.
- (22) T_1 values were obtained using an inversion-recovery pulse sequence $(180^\circ - \tau - 90^\circ)$. Plots of $\ln(I_0 - I_\tau)$ vs τ for each signal provided a straight line over all τ values investigated.
- (23) Schwarzenbach, G.; Anderegg, G.; Sallmann, R. Helv. Chim. Acta 1952, 35, 1785-1792.
- (24) Holz, R. C.; Brink, J. M.; Gobena, F. T. Inorg. Chem., submitted for publication.
- (25) See paragraph at end of paper regarding supplementary material.

© 1994 American Chemical Society

⁽¹⁾ Sorrell, T. N. Tetrahedron 1989, 45, 3-68.

Table 1. ¹H NMR (300 MHz) Parameters for [Cu₂(BPMP)(OH)](ClO₄)₂ at 55 °C in CD₃CN

signal	assignt	chem shift (ppm)	line width [fwhm ^a (Hz)]	$T_1 (\mathrm{ms})^b$	integration ^c	av ^d Cu-H (Å)	calcd ^e Cu-H (Å)
Α	Ph-CH ₂ -N	130	~4000	5	~4	3.42	4.4
A'	$Py \alpha - H$	78	1500	3	~4	3.15	4.0
В	N-CH ₂ -Py	69	900	4	4	3.68	4.3
С	N-CH ₂ -Py	56	475	2	4	3.19	3.8
D	Py β'- H	22.4	77	24	4	4.90	5.7
E	Ρy β-Η	21.3	66	24	4	5.09	5.7
F	Ph β -H	14.3	40	22	2	5.66	5.6
G	Py γ- H	9.45	32	56	4	5.75	6.5
Н	Ph-CH ₃	5.06	23	103	3	7.31	
Ι	OH	-33	850	2	~1	2.54	3.4

^a Full width at half-maximum. ^b T_1 values were obtained using the inversion-recovery method.²² ^c Integrations are based on the area of signals H and F. ^d Crystallographically determined average distances. All Cu-H average distances are taken as the arithmetic average of equivalent protons to each copper(II) ion. ^e Distances calculated from $r_i = r_{ref}(T_{1i}/T_{tref})^{1/6}$ assuming that signal H (r_{ref}) is purely dipolar in nature.

Figure 2. Magnitude ¹H COSY spectrum of 1 obtained at 400 MHz (Bruker ARX-400) at 25 °C in CD₃CN solution. This spectrum was obtained with an acquisition time of 15 ms and 256 data points in the F1 dimension and 512 data points in the F2 dimension. A sine bell squared weighting function and zero-filling to 1024 data points were applied prior to Fourier transformation in both dimensions.

relative integrations of signals B (69 ppm) and C (62 ppm) of complex 2 with signals B (76 ppm) and C (61 ppm) of 1 are consistent with the assignment of these signals to the diastereotopic β -CH₂ protons of the pyridylmethyl moiety. Comparison of signal A (143 ppm) of 2 with signal A (130 ppm) of 1 is consistent with this signal resulting from the β -CH₂ protons of the phenol-methylamine linkage.

Signal A' (78 ppm) and I (-35 ppm) are the only remaining unassigned signals in the ¹H NMR spectrum of 1. The only protons in 1 not assigned are the pyridine α -H protons and the μ -hydroxo OH proton. Signal I can be assigned to the μ -hydroxo OH proton since the addition of a small amount of D₂O causes this signal to disappear.¹¹ Moreover, the T₁ value is ~1 ms which is consistent with the short crystallographically determined Cu-H distance (2.54 Å). From X-ray diffraction results for 1 the Cu d_{z^2} orbital, which contains the unpaired electron, is directed along the Cu-O μ -hydroxo bond. Therefore, a spin polarization mechanism would cause the μ -hydroxo proton to be shielded and thus shifted upfield, consistent with its assignment to signal I. Signal A' can be assigned to the pyridine α -H protons by default, and this assignment is consistent with T_1 values, chemical shift, and relative integrations.

Full assignment of the ¹H NMR spectrum of 1 combined with the crystallographic results and T_1 values allows the dominant proton relaxation pathway to be determined. Assuming a paramagnetic dipolar relaxation mechanism for antiferromagnetically coupled dinuclear Cu(II) complexes, the Cu-H distance (r) should be proportional to $T_1^{1/6}$ (Table 1).⁴ Using the equation $r_i = r_{ref} (T_{1i}/T_{1ref})^{1/6}$ where r_i is the Cu-H_i distance, $r_{\rm ref}$ is the Cu-H_{ref} distance, T_{1i} is the relaxation time of proton *i*, and T_{lref} is the relaxation time of the reference proton, distances of each proton from the Cu(II) center can be estimated. If r_{ref} is taken as the arithmetic average of equivalent protons to each Cu(II) ion for the *p*-methylphenol group (7.31 Å), the remaining distances of all of the protons in 1 can be calculated (Table 1). All of the calculated Cu-H distances are within ca. 20% of the Cu-H distances derived from the X-ray structure of 1 (Table 1). These data indicate that a paramagnetic dipolar relaxation mechanism dominates in antiferromagnetically coupled trigonal bypyramidal dicopper(II) complexes.

In conclusion, isotropically shifted ¹H NMR signals can be easily obtained for antiferromagnetically coupled dicopper(II) complexes, and both one- and two-dimensional ¹H NMR techniques can be performed. We are currently probing the effect of the strength of the magnetic coupling on line widths and T_1 values. The application of ¹H NMR techniques to dicopper(II) metalloprotein active sites is also under investigation.

Acknowledgment. This work was supported by the Utah State University Research Office and the Petroleum Research Fund (ACS-PRF 28635-G). The Bruker ARX-400 NMR spectrometer was purchased with funds provided by the National Science Foundation and USU.

Supplementary Material Available: A thermal ellipsoid drawing, tables detailing the X-ray data collection and refinement, bond distances, bond angles, final anisotropic thermal parameters, calculated or refined H atom coordinates, and the atomic coordinates and equivalent isotropic thermal parameters for 1, and Figure 1, showing ¹H NMR spectra of 1 and 2 (8 pages). Ordering information is given on any current masthead page.